En bref Reinforcement Learning from Human Feedback (RLHF) est devenu une brique centrale de l’entraînement des IA modernes. En combinant préférences humaines et signaux de récompense, RLHF permet aux modèles de s’aligner sur des valeurs humaines et des exigences opérationnelles réelles, tout en préservant l’efficacité et la créativité des systèmes. Dans un contexte où les …
La montée en puissance du reinforcement learning s’appuie sur une idée simple mais puissante: apprendre une politique qui associe chaque état de l’environnement à une action optimale, afin de maximiser une récompense attendue cumulée dans le temps. L’agent interagit avec son environnement, observe les transitions d’états et les récompenses qui en résultent, puis ajuste sa …
Résumé d’ouverture: Le Reinforcement Learning from Human Feedback (RLHF) incarne une approche puissante qui combine apprentissage par renforcement et retours humains pour aligner les systèmes d’IA sur des valeurs et préférences humaines complexes. En 2025, cette méthode est devenue un élément central pour améliorer la robustesse, l’exploration et la capacité des agents à produire des …
The understanding of reinforcement learning (RL) has evolved into a cornerstone of intelligent decision-making across industries. By 2025, RL has moved from academic curiosities to practical tools powering autonomous robotics, personalized recommendations, and strategic optimization. The core idea remains simple yet powerful: an agent learns to make better choices by interacting with an environment, receiving …
In the rapidly evolving landscape of artificial intelligence, reinforcement learning (RL) has moved from academic curiosity to a practical engine powering autonomous systems, robotics, and decision-making at scale. When combined with deep learning, RL becomes Deep Reinforcement Learning (DRL), a paradigm that lets agents learn complex behaviors by interacting with their surroundings. By 2025, DRL …





